Appendix A: Collector Sizing

Collector sizing depends on the magnitude of the building ventilation and the wall area available for mounting the transpired solar collector.

V _{bldg} = building outdoor air	building outdoor airfl ow rate		12,000	cfm
A _{avai} = available wall area for	= available wall area for collector		2,000	ft ²
******	= minimum collector flow rate (typically about 4 cfm/ft²)		4_	cfm/ft ²
v_{max} = maximum collector flow rate (typically about 8 cfm/ft ²)		8_	cfm/ft ²	
A_{min} = minimum collector area (ft ²)				
$A_{max} = maximum collector area (ft2)$				
A_{coll} = design collector area (ft ²)				
V_{coll} = total flow rate through the collector (cfm)				
v_{coll} = flow rate per unit collector area (cfm/ft ²)				
A _{min} =	$\frac{\textbf{12,000}}{V_{bldg}} \div \frac{\textbf{8}}{V_{max}}$	=	1,500	ft ²
A _{max} =	$\frac{\textbf{12,000}}{V_{bldg}} \; \div \; \frac{\textbf{4}}{V_{min}}$	=	3,000	ft ²
1) if $A_{avail} > A_{max}$, then	$A_{coll} = A_{max}$	=		ft ²
	$V_{coll} = V_{bldg}$	=		cfm
	$v_{\text{coll}} = v_{\text{min}}$	=		cfm/ft ²
2) if $A_{min} < A_{avail} < A_{max}$, then	$A_{coll} = A_{avail}$	=	2,000	ft ²
	$V_{coll} = V_{bldg}$	=	12,000	cfm
	$v_{\text{coll}} = V_{\text{bldg}} \div A_{\text{avail}}$	=	6_	cfm/ft ²
3) if $A_{avail} < A_{min}$, then	$A_{coll} = A_{avail}$	=		ft ²
	$V_{coll} = A_{avail} \times v_{max}$	=		cfm
	$v_{\text{coll}} = v_{\text{max}}$	=		cfm/ft ²

Annual Energy Savings

t_{weeks} = time that there is airflow through the collector _____**35** weeks/year

(length of collector operating season)

q_{solar} = useful energy from the collector (from Map 1) _____ kBtu/ft²-year

q_{fan} = fan energy for airflow through the collector (typically about 1 W/ft²)

U_{wall} = heat loss coefficient for the building wall ______ Btu/°F-ft²-hour

HDD = annual heating degree-days (from Map 2) ______ *F-days/year

E_{htg} = efficiency of the conventional heating system ______ **0.7** fraction

Q_{solar} = solar energy collected (MBtu/year)

Q_{wall} = wall heat recapture (MBtu/year) (only significant for very poorly insulated walls)

 Q_{saved} = thermal energy savings (MBtu/year)

 Q_{fan} = fan energy use (kWh/year)

Thermal Energy Savings:

$$Q_{solar} = \frac{2,000}{A_{coll}} \times \frac{120}{q_{solar}} \times (\frac{5}{t_{days}} \div 7) \div 10^3 = \frac{171}{q_{solar}}$$
 MBtu/year

$$Q_{wall} = \underbrace{ \textbf{2,000}}_{A_{coll}} \times \underbrace{ \textbf{0.1}}_{U_{wall}} \times \underbrace{ \textbf{16}}_{t_{hours}} \times \underbrace{ (\textbf{5}}_{t_{days}} \div 7) \times \underbrace{ \textbf{5,000}}_{HDD} \div \ 10^6 = \underbrace{ \textbf{11}}_{HDD} \quad MBtu/year$$

$$Q_{saved} = \left(\begin{array}{cc} 171 \\ \overline{Q_{solar}} \end{array} + \begin{array}{cc} 11 \\ \overline{Q_{wall}} \end{array}\right) \div \begin{array}{cc} 0.7 \\ \overline{E_{htg}} \end{array} = \begin{array}{cc} 260 \\ \end{array}$$
 MBtu/year

Electrical Energy Parasitics: